Grade 5 Mathematics Big Ideas

Big Ideas –Priority 1

Supporting Ideas – Priority 2

Number Facts

Processes

[C] Communication [PS] Problem Solving

[CN] Connections [R] Reasoning

[ME] Mental Mathematics [T] Technology and Estimation [V] Visualization

Strand: Number

General Outcome: Develop number sense.	
Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Represent and describe whole numbers to 1 000 000. [C, CN, V, T] [ICT: C6–2.2]	 Write a given numeral, using proper spacing without commas; e.g., 934 567. Describe the pattern of adjacent place positions moving from right to left. Describe the meaning of each digit in a given numeral. Provide examples of large numbers used in print or electronic media. Express a given numeral in expanded notation; e.g., 45 321 = (4 × 10 000) + (5 × 1000) + (3 × 100) + (2 × 10) + (1 × 1) or 40 000 + 5000 + 300 + 20 + 1. Write the numeral represented by a given expanded notation.

- 2. Use estimation strategies, such as:
 - front-end rounding
 - compensation
 - compatible numbers

in problem-solving contexts.

[C, CN, ME, PS, R, V]

- > Provide a context for when estimation is used to:
 - make predictions
 - · check the reasonableness of an answer
 - · determine approximate answers.
- > Describe contexts in which overestimating is important.
- > Determine the approximate solution to a given problem not requiring an exact answer.
- Estimate a sum or product, using compatible numbers.
- Estimate the solution to a given problem, using compensation, and explain the reason for compensation.
- > Select and use an estimation strategy for a given problem.
- > Apply front-end rounding to estimate:
 - sums; e.g., 253 + 615 is more than 200 + 600 = 800
 - differences; e.g., 974 250 is close to 900 200 = 700
 - products; e.g., the product of 23×24 is greater than 20×20 (400) and less than 25×25 (625)
 - quotients; e.g., the quotient of $831 \div 4$ is greater than $800 \div 4$ (200).
- 3. Apply mental mathematics strategies and number properties, such as:
 - skip counting from a known fact
 - using doubling or halving
 - using patterns in the 9s facts
 - using repeated doubling or halving

in order to understand and recall basic multiplication facts (multiplication tables) to 81 and related division facts.

[C, CN, ME, R, V]

Understand, recall and apply multiplication and related division facts to 9×9 .

- Describe the mental mathematics strategy used to determine a given basic fact, such as:
 - skip count up by one or two groups from a known fact; e.g., if $5 \times 7 = 35$, then 6×7 is equal to 35 + 7 and 7×7 is equal to 35 + 7 + 7
 - skip count down by one or two groups from a known fact; e.g., if $8 \times 8 = 64$, then 7×8 is equal to 64 8 and 6×8 is equal to 64 8 8
 - doubling; e.g., for 8×3 think $4 \times 3 = 12$, and $8 \times 3 = 12 + 12$
 - patterns when multiplying by 9; e.g., for 9×6 , think $10 \times 6 = 60$, and 60 6 = 54; for 7×9 , think $7 \times 10 = 70$, and 70 7 = 63
 - repeated doubling; e.g., if 2×6 is equal to 12, then 4×6 is equal to 24 and 8×6 is equal to 48
 - repeated halving; e.g., for $60 \div 4$, think $60 \div 2 = 30$ and $30 \div 2 = 15$.
- Explain why multiplying by zero produces a product of zero (zero property of multiplication).
- \triangleright Explain why division by zero is not possible or is undefined; e.g., $8 \div 0$.
- > Determine, with confidence, answers to multiplication facts to 81 and related division facts.
- \triangleright Demonstrate understanding, recall/memorization and application of multiplication and related division facts to 9×9 .

4.	Apply mental mathematics strategies for multiplication, such	Determine the products when one factor is a multiple of 10, 100 or 1000 by annexing and adding zero; e.g., for 3 × 200 think 3 × 2 and then add two zeros.
	as:annexing then adding zerohalving and doubling	Apply halving and doubling when determining a given product; e.g., 32×5 is the same as 16×10 .
	• using the distributive property. [C, CN, ME, R, V]	Apply the distributive property to determine a given product that involves multiplying factors that are close to multiples of 10; e.g., $98 \times 7 = (100 \times 7) - (2 \times 7)$.
5.	Demonstrate, with and without concrete materials, an understanding of multiplication	(Students investigate a variety of strategies and become proficient in at least one appropriate and efficient strategy that they understand.)
	(2-digit by 2-digit) to solve problems. [C, CN, PS, V]	Illustrate partial products in expanded notation for both factors; e.g., for 36×42 , determine the partial products for $(30 + 6) \times (40 + 2)$.
		Represent both 2-digit factors in expanded notation to illustrate the distributive property; e.g., to determine the partial products of 36×42 , $(30 + 6) \times (40 + 2) = 30 \times 40 + 30 \times 2 + 6 \times 40 + 6 \times 2 = 1200 + 60 + 240 + 12 = 1512$.
		Model the steps for multiplying 2-digit factors, using an array and base ten blocks, and record the process symbolically.
		Describe a solution procedure for determining the product of two given 2-digit factors, using a pictorial representation such as an area model.
		> Solve a given multiplication problem in context, using personal strategies, and record the process.
		Refine personal strategies to increase their efficiency.
		Create and solve a multiplication problem, and record the process.

Г

6.	Demonstrate, with and without concrete materials, an understanding of division (3-digit by 1-digit), and interpret remainders to solve problems. [C, CN, ME, PS, R, V]	 (Students investigate a variety of strategies and become proficient in at least one appropriate and efficient strategy that they understand.) Model the division process as equal sharing, using base ten blocks, and record it symbolically. Explain that the interpretation of a remainder depends on the context: ignore the remainder; e.g., making teams of 4 from 22 people round up the quotient; e.g., the number of five passenger cars required to transport 13 people express remainders as fractions; e.g., five apples shared by two people express remainders as decimals; e.g., measurement and money. Solve a given division problem in context, using personal strategies, and record the process. Refine personal strategies to increase their efficiency. Create and solve a division problem, and record the process.
7.	Demonstrate an understanding of fractions by using concrete, pictorial and symbolic representations to: create sets of equivalent fractions compare fractions with like and unlike denominators. [C, CN, PS, R, V]	 Create a set of equivalent fractions; and explain, using concrete materials, why there are many equivalent fractions for any given fraction. Model and explain that equivalent fractions represent the same quantity. Determine if two given fractions are equivalent, using concrete materials or pictorial representations. Formulate and verify a rule for developing a set of equivalent fractions. Identify equivalent fractions for a given fraction. Compare two given fractions with unlike denominators by creating equivalent fractions. Position a given set of fractions with like and unlike denominators on a number line, and explain strategies used to determine the order.
8.	Describe and represent decimals (tenths, hundredths, thousandths), concretely, pictorially and symbolically. [C, CN, R, V]	 Write the decimal for a given concrete or pictorial representation of part of a set, part of a region or part of a unit of measure. Represent a given decimal, using concrete materials or a pictorial representation. Represent an equivalent tenth, hundredth or thousandth for a given decimal, using a grid. Express a given tenth as an equivalent hundredth and thousandth. Express a given hundredth as an equivalent thousandth. Describe the value of each digit in a given decimal.
9.	Relate decimals to fractions and fractions to decimals (to thousandths). [CN, R, V]	 Write a given decimal in fraction form. Write a given fraction with a denominator of 10, 100 or 1000 as a decimal. Express a given pictorial or concrete representation as a fraction or decimal; e.g., 250 shaded squares on a thousandth grid can be expressed as 0.250 or ²⁵⁰/₁₀₀₀.

 10. Compare and order decimals (to thousandths) by using: benchmarks place value equivalent decimals. [C, CN, R, V] 	 Order a given set of decimals by placing them on a number line that contains the benchmarks 0.0, 0.5 and 1.0. Order a given set of decimals including only tenths, using place value. Order a given set of decimals including only hundredths, using place value. Order a given set of decimals including only thousandths, using place value. Explain what is the same and what is different about 0.2, 0.20 and 0.200. Order a given set of decimals including tenths, hundredths and thousandths, using equivalent decimals; e.g., 0.92, 0.7, 0.9, 0.876, 0.925 in order is: 0.700, 0.876, 0.900, 0.920, 0.925.
11. Demonstrate an understanding of addition and subtraction of decimals (limited to thousandths). [C, CN, PS, R, V]	 Place the decimal point in a sum or difference, using front-end estimation; e.g., for 6.3 + 0.25 + 306.158, think 6 + 306, so the sum is greater than 312. Correct errors of decimal point placements in sums and differences without using paper and pencil. Explain why keeping track of place value positions is important when adding and subtracting decimals. Predict sums and differences of decimals, using estimation strategies. Solve a given problem that involves addition and subtraction of decimals, limited to thousandths.

Strand: Patterns and Relations (Patterns)

General Outcome. Use patterns to describe the world and to solve problems

General Outcome: Use patterns to describe the world and to solve problems.	
Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
 Determine the pattern rule to make predictions about subsequent elements. 	Extend a given pattern with and without concrete materials, and explain how each element differs from the preceding one.
[C, CN, PS, R, V]	Describe, orally or in writing, a given pattern, using mathematical language such as one more, one less, five more.
	Write a mathematical expression to represent a given pattern, such as $r + 1$, $r - 1$, $r + 5$.
	> Describe the relationship in a given table or chart, using a mathematical expression.
	> Determine and explain why a given number is or is not the next element in a pattern.
	> Predict subsequent elements in a given pattern.
	> Solve a given problem by using a pattern rule to determine subsequent elements.
	> Represent a given pattern visually to verify predictions.

Strand: Patterns and Relations (Variables and Equations)

Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
2. Express a given problem as an equation in which a letter variable is used to represent an unknown number (limited to whole numbers). [C, CN, PS, R]	 Explain the purpose of the letter variable in a given addition, subtraction, multiplication or division equation with one unknown; e.g., 36 ÷ n = 6. Express a given pictorial or concrete representation of an equation in symbolic form. Identify the unknown in a problem, and represent the problem with an equation. Create a problem for a given equation with one unknown.

3.	Solve problems involving single-variable, one-step
	equations with whole number coefficients and whole
	number solutions.
	[C, CN, PS, R]

- Express a given problem as an equation where the unknown is represented by a letter variable.
- Solve a given single-variable equation with the unknown in any of the terms; e.g., n + 2 = 5, 4 + a = 7, 6 = r 2, 10 = 2c.
- > Identify the unknown in a problem; represent the problem with an equation; and solve the problem concretely, pictorially or symbolically.
- > Create a problem for a given equation.

Strand: Shape and Space (Measurement)

General Outcome: Use direct and indirect measurement to solve problems.

Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Identify 90° angles. [ME, V]	 Provide examples of 90° angles in the environment. Sketch 90° angles without the use of a protractor. Label a 90° angle, using a symbol.
2. Design and construct different rectangles, given either perimeter or area, or both (whole numbers), and make generalizations. [C, CN, PS, R, V]	 Construct or draw two or more rectangles for a given perimeter in a problem-solving context. Construct or draw two or more rectangles for a given area in a problem-solving context. Determine the shape that will result in the greatest area for any given perimeter. Determine the shape that will result in the least area for any given perimeter. Provide a real-life context for when it is important to consider the relationship between area and perimeter.

 3. Demonstrate an understanding of measuring length (mm) by: selecting and justifying referents for the unit mm modelling and describing the relationship between mm and cm units, and between mm and m units. [C, CN, ME, PS, R, V] 	 Provide a referent for one millimetre, and explain the choice. Provide a referent for one centimetre, and explain the choice. Provide a referent for one metre, and explain the choice. Show that 10 millimetres is equivalent to 1 centimetre, using concrete materials; e.g., a ruler. Show that 1000 millimetres is equivalent to 1 metre, using concrete materials; e.g., a metre stick. Provide examples of when millimetres are used as the unit of measure.
 Demonstrate an understanding of volume by: selecting and justifying referents for cm³ or m³ units estimating volume, using referents for cm³ or m³ measuring and recording volume (cm³ or m³) constructing right rectangular prisms for a given volume. [C, CN, ME, PS, R, V] 	 Identify the cube as the most efficient unit for measuring volume, and explain why. Provide a referent for a cubic centimetre, and explain the choice. Provide a referent for a cubic metre, and explain the choice. Determine which standard cubic unit is represented by a given referent. Estimate the volume of a given 3-D object, using personal referents. Determine the volume of a given 3-D object, using manipulatives, and explain the strategy. Construct a right rectangular prism for a given volume. Construct more than one right rectangular prism for the same given volume.
 Demonstrate an understanding of capacity by: describing the relationship between mL and L selecting and justifying referents for mL or L units estimating capacity, using referents for mL or L measuring and recording capacity (mL or L). [C, CN, ME, PS, R, V] 	 Demonstrate that 1000 millilitres is equivalent to 1 litre by filling a 1 litre container using a combination of smaller containers. Provide a referent for a litre, and explain the choice. Provide a referent for a millilitre, and explain the choice. Determine the capacity unit of a given referent. Estimate the capacity of a given container, using personal referents. Determine the capacity of a given container, using materials that take the shape of the inside of the container (e.g., a liquid, rice, sand, beads), and explain the strategy.

Strand: Shape and Space (3-D Objects and 2-D Shapes)

General Outcome: Describe the characteristics of 3-D objects and 2-D shapes, and analyze the relationships among them.

Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
 6. Describe and provide examples of edges and faces of 3-D objects, and sides of 2-D shapes that are: parallel intersecting perpendicular vertical horizontal. [C, CN, R, T, V] [ICT: C6–2.2, P5–2.3] 	 Identify parallel, intersecting, perpendicular, vertical and horizontal edges and faces on 3-D objects. Identify parallel, intersecting, perpendicular, vertical and horizontal sides on 2-D shapes. Provide examples from the environment that show parallel, intersecting, perpendicular, vertical and horizontal line segments. Find examples of edges, faces and sides that are parallel, intersecting, perpendicular, vertical and horizontal in print and electronic media, such as newspapers, magazines and the Internet. Draw 2-D shapes that have sides that are parallel, intersecting, perpendicular, vertical or horizontal. Draw 3-D objects that have edges and faces that are parallel, intersecting, perpendicular, vertical or horizontal. Describe the faces and edges of a given 3-D object, using terms such as parallel, intersecting, perpendicular, vertical or horizontal. Describe the sides of a given 2-D shape, using terms such as parallel, intersecting, perpendicular, vertical or horizontal.
 7. Identify and sort quadrilaterals, including: rectangles squares trapezoids parallelograms rhombuses according to their attributes. [C, R, V] 	 Identify and describe the characteristics of a pre-sorted set of quadrilaterals. Sort a given set of quadrilaterals, and explain the sorting rule. Sort a given set of quadrilaterals according to the lengths of the sides. Sort a given set of quadrilaterals according to whether or not opposite sides are parallel.

Strand: Shape and Space (Transformations)

General Outcome: Describe and analyze position and motion of objects and shapes.

Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
8. Identify and describe a single transformation, including a translation, rotation and reflection of 2-D shapes. [C, T, V] [ICT: C6–2.1]	 Provide an example of a translation, rotation and reflection. Identify a given single transformation as a translation, rotation or reflection. Describe a given rotation about a vertex by the direction of the turn (clockwise or counterclockwise). Describe a given reflection by identifying the line of reflection and the distance of the image from the line of reflection. Describe a given translation by identifying the direction and magnitude of the movement.
9. Perform, concretely, a single transformation (translation, rotation or reflection) of a 2-D shape, and draw the image. [C, CN, T, V] [ICT: C6–2.1]	 Translate a given 2-D shape horizontally, vertically or diagonally, and draw the resultant image. Rotate a given 2-D shape about a vertex, and describe the direction of rotation (clockwise or counterclockwise) and the fraction of the turn (limited to ¼, ½, ¾ or full turn). Reflect a given 2-D shape across a line of reflection, and draw the resultant image. Draw a 2-D shape, translate the shape, and record the translation by describing the direction and magnitude of the movement. Draw a 2-D shape, rotate the shape about a vertex, and describe the direction of the turn (clockwise or counterclockwise) and the fraction of the turn (limited to ¼, ½, ¾ or full turn). Draw a 2-D shape, reflect the shape, and identify the line of reflection and the distance of the image from the line of reflection. Predict the result of a single transformation of a 2-D shape, and verify the prediction.

Strand: Statistics and Probability (Data Analysis)

General Outcome: Collect, display and analyze data to solve problems.

General Outcome. Concet, display and analyze data to solve problems.	
Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Differentiate between first-hand and second-hand data. [C, R, T, V] [ICT: C1–2.2, P5–2.3]	 Explain the difference between first-hand and second-hand data. Formulate a question that can best be answered using first-hand data, and explain why. Formulate a question that can best be answered using second-hand data, and explain why. Find examples of second-hand data in print and electronic media, such as newspapers, magazines and the Internet.
2. Construct and interpret double bar graphs to draw conclusions. [C, PS, R, T, V] [ICT: C6–2.2, P5–2.3]	 Determine the attributes (title, axes, intervals and legend) of double bar graphs by comparing a given set of double bar graphs. Represent a given set of data by creating a double bar graph, label the title and axes, and create a legend without the use of technology. Draw conclusions from a given double bar graph to answer questions. Provide examples of double bar graphs used in a variety of print and electronic media, such as newspapers, magazines and the Internet. Solve a given problem by constructing and interpreting a double bar graph.

Strand: Statistics and Probability (Chance and Uncertainty)

General Outcome: Use experimental or theoretical probabilities to represent and solve problems involving uncertainty.

Specific Outcomes	Achievement Indicators
It is expected that students will:	The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
 3. Describe the likelihood of a single outcome occurring, using words such as: impossible possible certain. [C, CN, PS, R] 	 Provide examples of events from personal contexts that are impossible, possible or certain. Classify the likelihood of a single outcome occurring in a probability experiment as impossible, possible or certain. Design and conduct a probability experiment in which the likelihood of a single outcome occurring is impossible, possible or certain. Conduct a given probability experiment a number of times, record the outcomes, and explain the results.
 4. Compare the likelihood of two possible outcomes occurring, using words such as: less likely equally likely more likely. [C, CN, PS, R] 	 Identify outcomes from a given probability experiment that are less likely, equally likely or more likely to occur than other outcomes. Design and conduct a probability experiment in which one outcome is less likely to occur than the other outcome. Design and conduct a probability experiment in which one outcome is equally likely to occur as the other outcome. Design and conduct a probability experiment in which one outcome is more likely to occur than the other outcome.