Grade 1 Mathematics Big Ideas

Big Ideas -Priority 1	Supporting Ideas - Priority 2		
[C] Communication	[PS] Problem Solving		
[CN] Connections	[R] Reasoning		
[ME] Mental Mathematics	[T] Technology and Estimation	[V] Visualization	

Number Facts

[C] Communication
[PS] Problem Solving
[CN] Connections
[T] Technology and Estimation
[V] Visualization

Strand: Number General Outcome: Develop number sense.	
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Say the number sequence 0 to 100 by: - 1s forward between any two given numbers - 1s backward from 20 to 0 - 2 s forward from 0 to 20 - 5 s and 10 s forward from 0 to 100 . [C, CN, ME, V]	$>$ Recite forward by 1 s the number sequence between two given numbers (0 to 100). > Recite backward by 1 s the number sequence between two given numbers (20 to 0). > Read a given numeral (0 to 100) when it is presented symbolically. > Skip count forward by 2 s to 20 , starting at 0 . $>$ Skip count forward by 5 s to 100 , starting at 0 . > Skip count forward by 10 s to 100 , starting at 0 . $>$ Identify and read numbers in the environment. > Identify and correct errors and omissions in a given number sequence.
2. Subitize (recognize at a glance) and name familiar arrangements of 1 to 10 objects or dots. [C, CN, ME, V]	Look briefly at a given familiar arrangement of objects or dots, and identify how many objects or dots there are without counting. Identify the number represented by a given arrangement of dots on a ten frame.

3. Demonstrate an understanding of counting by: - indicating that the last number said identifies "how many" - showing that any set has only one count - using counting-on - using parts or equal groups to count sets. [C, CN, ME, R, V]	Answer the question, "How many are in the set?", using the last number counted in a given set. Identify and correct counting errors in a given counting sequence. Show that the count of the number of objects in a given set does not change regardless of the order in which the objects are counted. Count the number of objects in a given set, rearrange the objects, predict the new count and recount to verify the prediction. Determine the total number of objects in a given set, starting from a known quantity and counting on. Count quantity, using groups of 2,5 or 10 and counting on. Record the number of objects in a given set (up to 100).
4. Represent and describe numbers to 20 , concretely, pictorially and symbolically. [C, CN, V]	Represent a given number up to 20, using a variety of manipulatives, including ten frames and base ten materials. Read given number words to 20. Partition any given quantity up to 20 into 2 parts, and identify the number of objects in each part. Model a given number, using two different objects; e.g., 10 desks represents the same number as 10 pencils. Place given numerals on a number line with benchmarks $0,5,10$ and 20. Find examples of a given number in the environment.
5. Compare sets containing up to 20 elements, using: - referents - one-to-one correspondence to solve problems. [C, CN, ME, PS, R, V]	Build a set equal to a given set that contains up to 20 elements. Build a set that has more elements than, fewer elements than or as many elements as a given set. Build several sets of different objects that have the same given number of elements in the set. Compare two given sets, using one-to-one correspondence, and describe the sets, using comparative words such as more, fewer or as many. Compare a set to a given referent, using comparative language. Solve a given problem (pictures and words) that involves the comparison of two quantities.

6. Estimate quantities to 20 by using referents. [C, CN, ME, PS, R, V]	Estimate a given quantity by comparing it to a given referent (known quantity). Select an estimate for a given quantity from at least two possible choices, and explain the choice.
7. Demonstrate an understanding of conservation of number. $[\mathrm{C}, \mathrm{R}, \mathrm{~V}]$	Explain why for a given number of counters, no matter how they are grouped, the total number of counters does not change. Group a set of given counters in more than one way.
8. Identify the number, up to 20 , that is: - one more - two more - one less - two less than a given number. [C, CN, ME, R, V]	Name the number that is one more, two more, one less or two less than a given number, up to 20. Represent a number on a ten frame that is one more, two more, one less or two less than a given number.
9. Demonstrate an understanding of addition of numbers with answers to 20 and their corresponding subtraction facts, concretely, pictorially and symbolically, by: - using familiar mathematical language to describe additive and subtractive actions - creating and solving problems in context that involve addition and subtraction - modelling addition and subtraction, using a variety of concrete and visual representations, and recording the process symbolically. [C, CN, ME, PS, R, V]	Act out a given problem presented orally or through shared reading. Indicate if the scenario in a given problem represents additive or subtractive action. Represent the numbers and actions presented in a given problem by using manipulatives, and record them using sketches and/or number sentences. Create an addition problem based on personal experiences, and simulate the action with counters. Create a subtraction problem based on personal experiences, and simulate the action with counters. Create a word problem for a given number sentence (equation). Represent a given problem pictorially or symbolically to show the additive or subtractive action, and solve the problem.

10. Describe and use mental mathematics strategies, such as:

- counting on and counting back
- making 10
- using doubles
- thinking addition for subtraction
for basic addition facts and related subtraction facts to 18 .
[C, CN, ME, PS, R, V]
> Use and describe a mental mathematics strategy for determining a given sum.
> Use and describe a mental mathematics strategy for determining a given difference.
> Refine mental mathematics strategies to increase their efficiency.
> Write the related subtraction fact for a given addition fact.
> Write the related addition fact for a given subtraction fact.
> Demonstrate understanding and application of strategies for addition and related subtraction facts to 18 .
$>$ Demonstrate recall/memorization of addition and related subtraction facts to 5 .

Strand: Patterns and Relations (Patterns)

General Outcome: Use patterns to describe the world and to solve problems.

Specific Outcomes

It is expected that students will:

1. Demonstrate an understanding of repeating patterns
(two to four elements) by:

- describing
- reproducing
- extending
- creating
patterns using manipulatives, diagrams, sounds and actions.
[C, PS, R, V]
[ICT: P2-1.1]

Achievement Indicators

The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
> Describe a given repeating pattern containing two to four elements in its core.
$>$ Identify and describe errors in a given repeating pattern.
> Identify and describe the missing element(s) in a given repeating pattern.
$>$ Create and describe a repeating pattern, using a variety of manipulatives, diagrams, sounds and actions.
> Reproduce and extend a given repeating pattern, using manipulatives, diagrams, sounds and actions.
> Identify and describe a repeating pattern in the environment, e.g., in the classroom, outdoors, using everyday language.
> Identify repeating events; e.g., days of the week, birthdays, seasons.

2. Translate repeating patterns from one representation to another. [C, CN, R, V]	Represent a given repeating pattern, using another mode; e.g., actions to sound, colour to shape, ABC ABC to bear eagle fish bear eagle fish. Describe a given repeating pattern, using a letter code; e.g., $\mathrm{ABC} \mathrm{ABC} \ldots$
3. Sort objects, using one attribute, and explain the sorting rule. [C, CN, R, V]	Identify a common attribute in a given set of objects. Choose a single attribute to sort a given set of objects, sort the set, and explain the sorting rule. Sort a given set of objects, using a given sorting rule. Determine the difference between two given pre-sorted sets of objects, and explain a possible sorting rule used to sort them.
Strand: Patterns and Relations (Variables and Equations) General Outcome: Represent algebraic expressions in multiple ways.	
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
4. Describe equality as a balance and inequality as an imbalance, concretely and pictorially (0 to 20). [C, CN, R, V]	Construct two equal sets, using the same objects (same shape and mass), and demonstrate their equality of number, using a balance (limited to 20 elements). Construct two unequal sets, using the same objects (same shape and mass), and demonstrate their inequality of number, using a balance (limited to 20 elements). Determine if two given concrete sets are equal or unequal, and explain the process used.
5. Record equalities, using the equal symbol. $[\mathrm{C}, \mathrm{CN}, \mathrm{PS}, \mathrm{~V}]$	Represent a given equality, using manipulatives or pictures. Represent a given pictorial or concrete equality in symbolic form. Provide examples of equalities where the given sum or difference is on either the left or right side of the equal symbol (=). Record different representations of the same quantity (0 to 20) as equalities.

Strand: Shape and Space (Measurement) General Outcome: Use direct and indirect mea	ement to solve problems.
Specific Outcomes It is expected that students will:	Achievement Indicators The following set of indicators may be used to determine whether students have met the corresponding specific outcome.
1. Demonstrate an understanding of measurement as a process of comparing by: \qquad - identifying attributes that can be compared - ordering objects - making statements of comparison - filling, covering or matching. [C, CN, PS, R, V]	Identify common attributes, such as length (height), mass (weight), volume (capacity) and area, that could be used to compare two given objects. > Order a set of objects by length (height), mass (weight), volume (capacity) or area, and explain their ordering. > Compare two given objects, and identify the attributes used to compare. > Determine which of two or more given objects is longest/shortest by matching, and explain the reasoning. Determine which of two or more given objects is heaviest/lightest by comparing, and explain the reasoning. Determine which of two or more given objects holds the most/least by filling, and explain the reasoning. > Determine which of two or more given objects has the greatest/least area by covering, and explain the reasoning.
2. Sort 3-D objects and 2-D shapes, using one attribute, and explain the sorting rule. [C, CN, R, V]	> Sort a given set of familiar 3-D objects or 2-D shapes, using a given sorting rule. > Choose a single attribute to sort a given set of familiar 3-D objects, sort the set, and explain the sorting rule. > Choose a single attribute to sort a given set of 2-D shapes, sort the set, and explain the sorting rule. > Determine the difference between two given pre-sorted sets of familiar 3-D objects or 2-D shapes, and explain a possible sorting rule used to sort them.

3.	Replicate composite 2-D shapes and 3-D objects.	$>$	Select 2-D shapes from a given set to reproduce a given composite 2-D shape.
[CN, PS, V]			

